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Continuous joint angle estimation plays an important role in motion intention recognition and rehabilitation training. In this
study, a surface electromyography- (sEMG-) mechanomyography (MMG) state-space model is proposed to estimate continuous
multijoint movements from sEMG andMMG signals accurately./emodel combines forward dynamics with a Hill-based muscle
model that estimates joint torque only in a nonfeedback form, making the extended model capable of predicting the multijoint
motion directly. /e sEMG and MMG features, including the Wilson amplitude and permutation entropy, are then extracted to
construct a measurement equation to reduce system error and external disturbances. Using the proposed model, a closed-loop
prediction-correction approach, unscented particle filtering, is used to estimate the joint angle from sEMG and MMG signals.
Comprehensive experiments are conducted on the human elbow and shoulder joint, and remarkable improvements are
demonstrated compared with conventional methods.

1. Introduction

In human-machine interaction (HMI), surface electromy-
ography (sEMG) is often used to serve as the input signal
source. /e sEMG signal is a weak electrical potential
generated by muscle cells upon electrical or neurological
activation, and it is detected from superficial muscles by
using surface electrodes. /e signal contains abundant in-
formation and has a distinct characteristic. Moreover, its
collection is simple and not traumatic. /e sEMG signal has
become a research hotspot in the field of human-computer
interaction technology, especially in the manufacturing of
exoskeleton robots [1], intelligent prosthetics [2], and re-
habilitation robots [3].

sEMG studies usually focus on feature extraction and
pattern classification. Identifying a plurality of discrete action
categories has an accuracy rate of approximately 90% [4].

Studies on the classification of discrete actions have been done
from the laboratory to the market [5]. Estimating continuous
human joint movement is a critical focus in sEMG at present.
Many achievements have already been made, especially in the
field of rehabilitation robots, where forecasting the contin-
uous motion variables of patients is vital to achieve smooth
control of the rehabilitation robot [6]. However, the sEMG
signal is susceptible to interference from sweat and skin
impedance, which consequently deteriorates the control
accuracy.

Mechanomyography (MMG) is a mechanical signal
produced by contracting muscles, and it reflects muscle
activity in the form of low-frequency (<50Hz) vibration. In
contrast to sEMG signals, MMG signals are unaffected by
sweat and changes in skin impedance. Recent studies have
proven the efficacy of MMG, such as in upper-limb pros-
theses control [7–9] and hand movement analysis [10–13].
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However, the MMG signal has considerably lower signal-to-
noise ratios than the sEMG signal. External noise caused by
movement artifact can also introduce interference to MMG
measurement. /us, combining the advantages of both
sEMG and MMG would be of great significance to under-
standing muscle activities and enhancing HMI.

Extracting features such as root mean square and the
absolute value of amplitude and then establishing a motion
model with neural networks constitute an effective method
for estimating continuous joint motion [14, 15]. /e esti-
mation can also be performed through the physiological
muscle model, for which the Hill-based muscle model
(HMM) is often used [16, 17]. However, the HMM presents
two challenges: (1) the HMM involves many complex pa-
rameters that are difficult to identify and is computationally
heavy, and (2) in the HMM, motion states are indirectly
calculated from the sEMG and MMG signals, thereby
generating accumulative errors and worsening the estima-
tion accuracy.

To address the above challenges, this study developed a
new model that fuses sEMG and MMG signals and brings
together HMM and joint dynamics. /is model can directly
calculate the joint motion from sEMG and MMG signals.
Wilson amplitude (WA) and permutation entropy (PE) are
extracted to establish the measurement equations. /en, an
sEMG–MMG state-space model is created to estimate the
mutijoint angle.

2. Methodology

As shown in Figure 1, the sEMG-MMG state-space model
consists of three parts: (1) the sEMG andMMG signals to the
joint forward dynamics, (2) the fusion of sEMG and MMG
features, and (3) the prediction algorithm./emodel aims to
estimate the joint moving states through the muscle model
and fusion features.

2.1. Data Acquisition. /e muscles relevant to elbow and
shoulder joint motion were selected, including the biceps
brachii (BB), triceps brachii (TB), brachioradialis (BR),
trapezius (TZ), teres minor (TM), anterior deltoid (AD),
lateral deltoid (LD), and pectoralis major (PM). /e sEMG
and MMG signals were measured by placing eight surface
electrodes on the muscles of the right upper limb (Figure 2).

/e Trigno™ Wireless (Delsys Inc, Natick, MA, USA)
was used to record the sEMG and MMG signals at 1600Hz.
/e bandwidth was 20–450Hz, and the baseline noise was
less than 1.25 μV. /e sensors were positioned following the
SENIAM recommendation. /e reference electrode was
attached to the lateral elbow epicondyle.

/e Codamotion system (Charnwood Dynamics Ltd.,
UK) was used to record the real joint angle information./is
system can capture and analyze motion information in real
time through infrared capture. Figure 3 shows the Coda-
motion system and placement of markers.

Ten healthy subjects (five males and five females, 23± 2
years old, weighing 50–70 kg) were tested in the experi-
ments. /e study was approved by the Hangzhou Dianzi

University’s Institutional Review Board, and all subjects
provided a written informed consent prior to participation.
Figure 4 shows the experimental movements. /e subject (1)
sits on a chair and keeps the muscles relaxed, (2) straightens
the right arm forward with elbow extension, (3) performs
elbow flexion, (4) straightens the arm upward with elbow
extension, (5) straightens the arm to the right side with
elbow extension, (6) performs elbow flexion, and (7) returns
the upper arm to the initial position while maintaining
elbow flexion. /e experimental movements involved
the main activities of the upper limb, thereby enabling us to
better analyze the movement of the shoulder and elbow
joints. Each subject completed all movements with steps
1-2-3-4-5-6-7-1 in 15 s and performed the sequence with or
without a load (3 kg). /e subjects were given an appropriate
rest time after each round to reduce muscle fatigue. We
completed the data collection within five days, and the
subjects repeated the procedure 10 times in each experiment
day. In this way, we were able to collect the required data.

2.2. Data Preprocessing. Both sEMG and MMG signals are
very weak, nonstationary, and random. Many kinds of noise
exist in the acquisition process./e sEMG andMMG signals
must be denoised for further application. In this experiment,
the Trigno Wireless (Delsys Inc.) with a bandpass filter
(sEMG and MMG signals of 20–450 and 5–150Hz, re-
spectively) was used to eliminate most of the inherent noises
and motion artifacts.

/e sampling frequency of the joint angle signal is
100Hz, and that of the sEMG and MMG signals is 1600Hz.
To keep the sEMG and MMG signals consistent with the
joint angle signal, subsampling of the sEMG signals was
implemented using feature extraction. Afterward, the sub-
sampling frequency of the sEMG and MMG signals was
changed from 1600Hz to 100Hz.

2.3. sEMG-MMG State-Space Model

2.3.1. Hill-Based Muscle Model. Figure 5 illustrates a sim-
plified HMM. /e HMM consists of a contractile element
and a parallel elastic element. /e contractile element
produces the active muscle force Fm

A , and the parallel elastic
element produces the passive force Fm

P . /e model can be
described as follows:

F
m

� F
m
P + F

m
A � fP(l) · F

m
0 + fA(l) · fV(v) · a(k) · F

m
0 ,

l �
lm

lm0
,

v �
vm

vm
0

,

(1)

where Fmt is the musculotendon force, fP(l) is the nor-
malized passive force-length relationship, Fm

0 is the maxi-
mum isometric force, l is the normalized muscle fiber length,
lm is the current muscle fiber length, lm0 is the optimal fiber
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Figure 1: Structure of the sEMG-MMG state-space model. (1)/e sEMG andMMG signals to the joint forward dynamics, (2) the fusion of
sEMG and MMG features, and (3) the prediction algorithm.
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Figure 2: sEMG sensor arrangement (Ch1: BB, Ch2: TB, Ch3: BR, Ch4: TZ, Ch5: TM, Ch6: AD, Ch7: LD, and Ch8: PM).
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length, fA(l) is the normalized active force-length rela-
tionship, fV(v) is the normalized force-velocity relation-
ship, v is the normalized muscle fiber velocity, vm is the
muscle contraction velocity, vm

0 is the maximum muscle
contraction velocity, and a(k) is the muscle activation [18].

According to the abovementioned equations, the mus-
culotendon force can be described as follows:

F
mt

� fA(l) · fV(v) · a(k) + fP(l)  · F
m
0 · cos(ϕ), (2)

where Fmt is the musculotendon force and ϕ is the pennation
angle.

/e simplifications of fA(l), fV(v), fP(l), Fm
0 , lt, lm0 , and

ϕ can replace the complex biomechanical parameters [19–22].
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Figure 4: Upper limb movements recorded: steps 1-2-3-4-5-6-7-1. Schematic of the (a) right-hand side and (b) back side.
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Figure 5: Hill-based muscle model.
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/e musculotendon length can also be simplified as a first-
order polynomial [23, 24]. /us,

l
mt

� b0 + b1 · θ, (3)

where lmt is the musculotendon length, b0 and b1 are
constants, and θ is the joint angle. /en, the moment arm r

and the joint moment τ can be calculated as follows:

r �
zlmt(θ)

zθ
� b1,

τ � F
mt

· r.

(4)

2.3.2. sEMG-MMG Joint Motion Model. /e angular ac-
celeration of the joint can be calculated as follows:

€θ �
1
Ie

· τ − τeg , τeg � τegm · sin(θ), (5)

where Ie is the moment of inertia, τeg is the external and
gravity torque, and τegm is the maximum of τeg.

By combining the above equations, the angular accel-
eration €θ can be described as follows:

€θ � s0 + s1 · θ + s2 · θ2  · a(k) + s3 · e
s4 ·θ

− s5 · sin(θ),

(6)

where si (i � 0, 1, . . ., 5) are constants computed as follows:

s0 �
k0 · Fm

0 · b1 · cos ϕ
Ie

+
k1 · Fm

0 · b0 − lt(  · b1

lm0 · Ie

+
k2 · Fm

0 · b0 − lt( 
2

· b1

lm0( 
2

· Ie · cos ϕ
,

s1 �
k1 · Fm

0 · b1( 
2

lm0 · Ie

+
2 · k2 · b0 − lt(  · b1( 

2

lm0( 
2

· Ie · cos ϕ
,

s2 �
k2 · Fm

0 · b1( 
3

lm0( 
2

· Ie · cos ϕ
,

s3 �
Fm
0 · b1 · cos ϕ

Ie

· exp
10 · b0 − lt(  · b1( 

2

lm0 · cos ϕ
− 15 ,

s4 �
10 · b1

lm0 · cos ϕ
,

s5 �
τegm
Ie

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

/en, we can obtain the sEMG-MMG joint motion
model in discrete time as follows:

€θk+1 � s0 + s1 · θk + s2 · θ2k  · a(k) + s3 · es4·θk − s5 · sin θk( ,

_θk+1 � _θk + €θk · Ts,

θk+1 � θk + _θk · Ts,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where _θk is the joint angular velocity, θk is the joint position,
and Ts is the sampling time.

2.3.3. sEMG-MMG Features and State-Space Model. /e
simplified sEMG–MMG joint motion model involves two
problems. First, the model omits certain physiological
parameters. Second, the biomechanical parameters vary
because of different body conditions. /ese problems
cause accumulative errors in the recursive calculation of
the joint angle. To eliminate these errors, we constructed a

measurement equation providing the joint angle mea-
surements as feedback, which then leads to a sEMG-MMG
state-space model. We built the measure equation by Wilson
amplitude (WA) and permutation entropy (PE) in this study.

(1) WA:
/e WA describes the different characteristics
among adjacent amplitudes [25]. It can be de-
scribed as follows:

WA � 
N

i�1
u xi+1 − xi − T


 , (9)

where xi and xi+1 are adjacent samples, and the
threshold T is 0.05V in this study.

(2) PE:
/e PE describes the complexity of the data and has
the advantages of good robustness and high anti-
interference [26, 27]. It can be described as follows:
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H(n) � − 
n!

π�1
p(π)ln(p(π)), (10)

where p(π) is the probability statistics in the entire time
series, n is an n-dimensional vector making, and π is the
different permutation ways.

To relate the sEMG and MMG features with the joint
motion model, the following second-order polynomial was
used as the fitting function:

y
u
k � c

u
0 + c

u
1 · _θk + c

u
2 · θk + c

u
3 · _θ

2
k + c

u
4 · θ2k + c

u
5 · _θk · θk,

(11)

where u � 1, 2, cu
i (i � 0, 1, . . ., 5) are constant parameters, y1

k

is theWA of the sEMG andMMG signals, and y2
k is the PE of

sEMG and MMG signals.
By combining the equations above, the nonlinear ex-

pression of the model was obtained:

xk+1 � f xk, ak(  + ωk,

yk+1 � h xk+1(  + υk+1,


f xk, ak(  �

s0 + s1 · θk + s2 · θ2k  · ak + s3 · es4 ·θk − s5 · sin θk( 

_θk + €θk · T

θk + _θk · T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

h xk(  �
c10 + c11 · _θk + c12 · θk + c13 · _θ

2
k + c14 · θ2k + c15 · _θk · θk

c20 + c21 · _θk + c22 · θk + c23 · _θ
2
k + c24 · θ2k + c25 · _θk · θk

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(12)

where ωk is the process noise, υk is the measurement noise,
ak represents themuscle activation a(k), xk � €θk

_θk θk 
T
,

and yk � y1
k y2

k 
T
.

2.3.4. Unscented Particle Filtering (UPF). /e UPF consists
of the generic particle filter (PF) and the unscented Kalman
filter (UKF). /e UPF first uses the UKF to generate the
proposal distribution for the PF, and the rest of the steps are
the same as PF [28]. /e steps to generate the proposal
distribution using UKF are as follows:

Particles are updated with the UKF using the following
equations:

X0 � x,

Xi � x +

���������

nx + λ( Px



 
i

i � 1, . . . , nx( ,

Xi � x −

���������

nx + λ( Px



 
i

i � nx, . . . , 2nx( ,

W
(m)
0 �

λ
nx + λ( 

,

W
(c)
0 � W

(m)
0 + 1 − α2 + β ,

W
(m)
i �

1
2 · (n + λ)

,

λ � α2 nx + κ(  − nx,

(13)

where nx is the dimension of x; x and Px are the mean and
covariance of x, respectively; κ is the scaling parameter; and
α, β are the control parameters.

Sigma points:

X
a
t− 1 � xa

t− 1 xa
t− 1 ±

����������
na + λ( Pa

t− 1


 . (14)

Time update:

Xx
t∣t− 1 � f Xx

t− 1, Xv
t− 1( ,

�xt∣t− 1 � 

2na

i�0
W

(m)
i X

x
i,t∣t− 1,

Yt∣t− 1 � h Xx
t− 1, Xn

t− 1( ,

yt∣t− 1 � 

2na

i�0
W

(m)
i Y

x
i,t∣t− 1,

Pt∣t− 1 � 

2na

i�0
W

(c)
i X

x
i,t∣t− 1 − xt∣t− 1  X

x
i,t | t− 1 − xt∣t− 1 

T
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where Yi � g(Xi) and y � g(x) is a nonlinear
transformation.
Measurement update:
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Pytyt
� 

2na

i�0
W

(c)
i Yi,t∣t− 1 − yt∣t− 1  Yi,t∣t− 1 − yt∣t− 1 

T
,

Pxtyt
� 

2na

i�0
W

(c)
i X

x
i,t∣t− 1 − xt∣t− 1  Y

x
i,t∣t− 1 − yt∣t− 1 

T
,

Kt � Pxtyt
P− 1

ytyt
,

xt � xt∣t− 1 + Kt yt − yt∣t− 1 ,

Pt � Pt∣t− 1 − KtPytyt
KT

t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

/en, we substituted the variables of the nonlinear ex-
pression with the update equation through calculation and
simulation.

3. Experimental Results

Ten subjects underwent two different situations, namely,
loads of 3 kg and no load. Figure 6 shows the eight channels

of the sEMG signals and joint motion recorded from a
typical subject without load. Figure 7 depicts the eight
channels of the MMG signals and joint motion recorded
from a typical subject with load. Figure 8 illustrates the
sEMG and MMG features from a typical subject.

Table 1 shows the identified values of the sEMG-MMG
state-space model. /e parameters are different in load and
no-load conditions.

/e identified parameters were substituted into the
sEMG-MMG state-space model above to directly estimate
the joint angle through the sEMG-MMG features and
closed-loop prediction approaches.

/e feature dataset of the multijoint movement was
inputted into the proposed model. Five-fold cross validation
was used to perform the simulation. Figure 9 shows the real
and estimated joint angles from a typical subject. Table 2 lists
the averaged results of the five subdatasets.

As shown in Figure 9 and Table 2, the mean RMSE and
CC of the elbow joint with load are 5.27 and 0.96, respec-
tively, which indicates that the sEMG-MMG state-space
model successfully kept the estimation convergent.
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Figure 6: (a–h) sEMG signals from BB, TB, BR, TZ, TM, AD, LD, and PM. (i) Angle signal of shoulder joint. (j) Angle signal of elbow joint
motion.
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Moreover, the estimation errors of the elbow joint are
smaller than those of the shoulder joint, and the load
successfully improved the accuracy.

Five representative regression techniques, namely, the
backpropagation neural network (BPNN) [29], generalized
regression neural network (GRNN) [30], support vector
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Figure 8: (a) sEMG signal from TM (A), WA (B), and PE (C). (b) MMG signals from AD (A), WA (B), and PE (C).
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Figure 7: (a–h) MMG signals from BB, TB, BR, TZ, TM, AD, LD, and PM. (i) Angle signal of shoulder joint. (j) Angle signal of elbow joint
motion.
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regression (SVR) [31], Fisher linear discriminant analysis
(FDA) [32], and fuzzy min-max neural network (FMMNN)
[33] were compared to verify the effectiveness of the pro-
posed model. /e same sEMG and MMG signals and fea-
tures (WA and PE) and training set of neural networks were
used in the experiments. /e results are shown in Figure 10
and Table 3.

As shown in Figure 10 and Table 3, the proposed model
exhibits the best performance in the experiments. /e mean
RMSE and CC of the proposed model are 6.27 and 0.95,
respectively. /e errors of the proposed model are much
smaller than those of the other regression methods.

4. Discussion

/is study aimed to build an sEMG-MMG state-space
model to accurately estimate continuous joint movements
from sEMG signals. /e results showed that the proposed
model improved the estimation accuracy of elbow-joint
and shoulder-joint motions, with mean RMSEs of less than
5.3 and 7.3, respectively, indicating that the sEMG-MMG
state-space model successfully kept the estimation con-
vergent. Moreover, the proposed model performed better
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Figure 9: (a) Real and estimated shoulder joint angles without load. (b) Real and estimated shoulder joint angles with load. (c) Real and
estimated elbow joint angles without load. (d) Real and estimated elbow joint angle with load. Red indicates estimated value; blue indicates
Codamotion measurement.

Table 2: Evaluation of the performance of the proposed model
(RMSE: root mean square error, CC: correlation coefficient).

RMSE CC
Elbow joint without load 5.86± 2.32 0.95± 0.02
Elbow joint with load 5.27± 2.03 0.96± 0.02
Shoulder joint without load 7.89± 1.68 0.92± 0.03
Shoulder joint with load 7.26± 1.73 0.93± 0.02

Table 1: Identified parameters of the sEMG-MMG state-space model.

si s0 s1 s2 s3 s4 s5

Load 5.26 − 8.57 − 5.37 0.02 − 0.13 0.58
No load 1.88 − 1.97 − 0.56 0.08 − 0.68 0.24
c1i c10 c11 c12 c13 c14 c15

Load − 2.67 − 0.07 4.43 − 0.24 − 1.59 0.02
No load − 0.39 0.01 1.57 0.12 − 0.29 0.24
c2i c20 c21 c22 c23 c24 c25

Load − 6.43 0.22 8.35 0.03 − 2.54 − 0.04
No load − 2.34 0.23 8.69 0.48 − 2.41 − 0.15
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in the experiments than the conventional regression
methods. In the comparative experiment, all of these
methods were limited by data size, causing the neural
networks to perform poorer than the sEMG-MMG state-
space model because the training of neural networks re-
quires more data sets.

Several basic limitations were associated with this study
that need further development to be used in rehabilitation
robots under real-world conditions. sEMG and MMG sig-
nals with specific motions were collected from healthy
volunteers in a laboratory environment. /erefore, the
performance of this model in real scenario with unscripted
free-form activities performed by elderly or actual patients is
unknown. Although no considerable difference in the in-
herent characteristics of the sEMG and MMG signals was
found between subjects with and without disabilities, the
amplitude and frequency of the signal still influenced the
estimation accuracy. In this study, each individual was
trained separately and required multiple repetitions of the
task to obtain sufficient data for training and testing pur-
poses. However, its difference from joint motions in real life
with a larger task set is unclear. Also, the sEMG-MMG

state-space model ignores some complex physiological pa-
rameters of HMM, which can result in prediction errors.
/ese conditions need to be investigated before using the
proposed model for clinical purposes.

5. Conclusions

In this study, a sEMG-MMG state-space model for multi-
joint motion estimation was constructed, where the con-
tinuous angular displacement could be estimated using the
sEMG and MMG signals. Extensive experiments and
comparison between the estimations and Codamotion
measurements demonstrated the effectiveness of the pro-
posed model. Compared with traditional methods for angle
estimation, the proposed technique improved the estimation
accuracy and real-time characteristics. In the future, the
proposed method could be utilized for the training of re-
habilitation robots and exoskeleton robots.
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Figure 10: Mean RMSE and CC of seven regression models.

Table 3: Evaluation of the performance of the proposed model
(RMSE: root mean square error, CC: correlation coefficient).

RMSE CC
Proposed model 6.27± 0.63 0.95± 0.02
HMM 13.42± 2.59 0.79± 0.09
BPNN 8.89± 1.03 0.92± 0.03
GRNN 8.58± 0.73 0.89± 0.04
SVR 8.43± 0.82 0.91± 0.05
FDA 9.07± 1.03 0.93± 0.02
FMMNN 7.29± 0.78 0.93± 0.01
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